If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2-15x+2=0
a = 17; b = -15; c = +2;
Δ = b2-4ac
Δ = -152-4·17·2
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{89}}{2*17}=\frac{15-\sqrt{89}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{89}}{2*17}=\frac{15+\sqrt{89}}{34} $
| 7-5=10x-1x-15 | | F(x)=x2-4x+7 | | x=11=-14 | | 3x/7-(2)=15 | | (3s+8)^2=36 | | 2u+2=12 | | 18-4x=-22 | | 3(c−13)=−30 | | -5(x+6)-4=-9 | | 4y+4=-y+5 | | 6(x-1)-12=-24 | | -35x=14,210 | | 103-8x=55 | | -2h-3=12+h | | −3(n+4)=15 | | -3(-3w+8)-w=4(w-6)-2 | | -2(4x-3)=22 | | 7.2=0.2n | | n-41,377=-1253 | | 9d+2=29 | | 4y+1y=4y^2 | | -4(1+7b)-5b=-169 | | 6x−3=12 | | -8y+20=-6(y-1) | | 5t^2-18t-9=0 | | x9=8 | | 8g+6=22 | | 4(x+1)+5=33 | | x(x-11)=-28 | | x18=90 | | 11x-11=13x-7 | | 12-8n=150 |